Android性能优化之使用SparseArray代替HashMap
最近在重构one的项目,其中用HashMap来缓存ActivityGroup加载过的View,Android Studio给出了一个警告,之前考虑项目进度没怎么在意,这次仔细看了下提示,如下:
Use new SparseArray<View> (...) instead for better performance
意思就是说用SparseArray来替代,以获取更好的性能。对SparseArray根本不熟悉,甚至都没听过,第一感觉应该是Android提供的类,于是ctl+鼠标左键进入SparseArray的源码,果不其然,确实是Android提供的一个工具类,部分源码如下:
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
import com.android.internal.util.ArrayUtils;
import com.android.internal.util.GrowingArrayUtils;
import libcore.util.EmptyArray;
/**
* SparseArrays map integers to Objects. Unlike a normal array of Objects,
* there can be gaps in the indices. It is intended to be more memory efficient
* than using a HashMap to map Integers to Objects, both because it avoids
* auto-boxing keys and its data structure doesn't rely on an extra entry object
* for each mapping.
*
* <p>Note that this container keeps its mappings in an array data structure,
* using a binary search to find keys. The implementation is not intended to be appropriate for
* data structures
* that may contain large numbers of items. It is generally slower than a traditional
* HashMap, since lookups require a binary search and adds and removes require inserting
* and deleting entries in the array. For containers holding up to hundreds of items,
* the performance difference is not significant, less than 50%.</p>
*
* <p>To help with performance, the container includes an optimization when removing
* keys: instead of compacting its array immediately, it leaves the removed entry marked
* as deleted. The entry can then be re-used for the same key, or compacted later in
* a single garbage collection step of all removed entries. This garbage collection will
* need to be performed at any time the array needs to be grown or the the map size or
* entry values are retrieved.</p>
*
* <p>It is possible to iterate over the items in this container using
* {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using
* <code>keyAt(int)</code> with ascending values of the index will return the
* keys in ascending order, or the values corresponding to the keys in ascending
* order in the case of <code>valueAt(int)</code>.</p>
*/
public class SparseArray<E> implements Cloneable {
private static final Object DELETED = new Object();
private boolean mGarbage = false;
private int[] mKeys;
private Object[] mValues;
private int mSize;
/**
* Creates a new SparseArray containing no mappings.
*/
public SparseArray() {
this(10);
}
/**
* Creates a new SparseArray containing no mappings that will not
* require any additional memory allocation to store the specified
* number of mappings. If you supply an initial capacity of 0, the
* sparse array will be initialized with a light-weight representation
* not requiring any additional array allocations.
*/
public SparseArray(int initialCapacity) {
if (initialCapacity == 0) {
mKeys = EmptyArray.INT;
mValues = EmptyArray.OBJECT;
} else {
mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
mKeys = new int[mValues.length];
}
mSize = 0;
}
@Override
@SuppressWarnings("unchecked")
public SparseArray<E> clone() {
SparseArray<E> clone = null;
try {
clone = (SparseArray<E>) super.clone();
clone.mKeys = mKeys.clone();
clone.mValues = mValues.clone();
} catch (CloneNotSupportedException cnse) {
/* ignore */
}
return clone;
}
/**
* Gets the Object mapped from the specified key, or <code>null</code>
* if no such mapping has been made.
*/
public E get(int key) {
return get(key, null);
}
/**
* Gets the Object mapped from the specified key, or the specified Object
* if no such mapping has been made.
*/
@SuppressWarnings("unchecked")
public E get(int key, E valueIfKeyNotFound) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) {
return valueIfKeyNotFound;
} else {
return (E) mValues[i];
}
}
/**
* Removes the mapping from the specified key, if there was any.
*/
public void delete(int key) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
mValues[i] = DELETED;
mGarbage = true;
}
}
}
/**
* @hide
* Removes the mapping from the specified key, if there was any, returning the old value.
*/
public E removeReturnOld(int key) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
final E old = (E) mValues[i];
mValues[i] = DELETED;
mGarbage = true;
return old;
}
}
return null;
}
/**
* Alias for {@link #delete(int)}.
*/
public void remove(int key) {
delete(key);
}
/**
* Removes the mapping at the specified index.
*/
public void removeAt(int index) {
if (mValues[index] != DELETED) {
mValues[index] = DELETED;
mGarbage = true;
}
}
/**
* Remove a range of mappings as a batch.
*
* @param index Index to begin at
* @param size Number of mappings to remove
*/
public void removeAtRange(int index, int size) {
final int end = Math.min(mSize, index + size);
for (int i = index; i < end; i++) {
removeAt(i);
}
}
private void gc() {
// Log.e("SparseArray", "gc start with " + mSize);
int n = mSize;
int o = 0;
int[] keys = mKeys;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
Object val = values[i];
if (val != DELETED) {
if (i != o) {
keys[o] = keys[i];
values[o] = val;
values[i] = null;
}
o++;
}
}
mGarbage = false;
mSize = o;
// Log.e("SparseArray", "gc end with " + mSize);
}
……
mSize++;单纯从字面上来理解,SparseArray指的是稀疏数组(Sparse array),所谓稀疏数组就是数组中大部分的内容值都未被使用(或都为零),在数组中仅有少部分的空间使用。因此造成内存空间的浪费,为了节省内存空间,并且不影响数组中原有的内容值,我们可以采用一种压缩的方式来表示稀疏数组的内容。
继续阅读SparseArray的源码,从构造方法我们可以看出,它和一般的List一样,可以预先设置容器大小,默认的大小是10:
public SparseArray() {
this(10);
}
public SparseArray(int initialCapacity) {
initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
mKeys = new int[initialCapacity];
mValues = new Object[initialCapacity];
mSize = 0;
}
再来看看它对数据的“增删改查”。
public void put(int key, E value) {}
public void append(int key, E value){}
修改数据起初以为只有setValueAt(int index, E value)可以修改数据,但后来发现put(int key, E value)也可以修改数据,我们查看put(int key, E value)的源码可知,在put数据之前,会先查找要put的数据是否已经存在,如果存在就是修改,不存在就添加。
public void put(int key, E value) {
int i = binarySearch(mKeys, 0, mSize, key);
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~binarySearch(mKeys, 0, mSize, key);
}
if (mSize >= mKeys.length) {
int n = ArrayUtils.idealIntArraySize(mSize + 1);
int[] nkeys = new int[n];
Object[] nvalues = new Object[n];
// Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
mKeys = nkeys;
mValues = nvalues;
}
if (mSize - i != 0) {
// Log.e("SparseArray", "move " + (mSize - i));
System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
}
mKeys[i] = key;
mValues[i] = value;
}
}
所以,修改数据实际也有两种方法:
public void put(int key, E value)
public void setValueAt(int index, E value)
最后再来看看如何查找数据。有两个方法可以查询取值:
public E get(int key)
public E get(int key, E valueIfKeyNotFound)
其中get(int key)也只是调用了 get(int key,E valueIfKeyNotFound),最后一个从传参的变量名就能看出,传入的是找不到的时候返回的值.get(int key)当找不到的时候,默认返回null。
查看第几个位置的键:
public int keyAt(int index)
有一点需要注意的是,查看键所在位置,由于是采用二分法查找键的位置,所以找不到时返回小于0的数值,而不是返回-1。返回的负值是表示它在找不到时所在的位置。
查看第几个位置的值:
public E valueAt(int index)
查看值所在位置,没有的话返回-1:
public int indexOfValue(E value)
最后,发现其核心就是折半查找函数(binarySearch),算法设计的很不错。
private static int binarySearch(int[] a, int start, int len, int key) {
int high = start + len, low = start - 1, guess;
while (high - low > 1) {
guess = (high + low) / 2;
if (a[guess] < key)
low = guess;
else
high = guess;
}
if (high == start + len)
return ~(start + len);
else if (a[high] == key)
return high;
else
return ~high;
}
相应的也有SparseBooleanArray,用来取代HashMap<Integer, Boolean>,SparseIntArray用来取代HashMap<Integer, Integer>,大家有兴趣的可以研究。
SparseArray是android里为<Interger,Object>这样的Hashmap而专门写的类,目的是提高效率,其核心是折半查找函数(binarySearch)。在Android中,当我们需要定义
HashMap<Integer, E> hashMap = new HashMap<Integer, E>();
时,我们可以使用如下的方式来取得更好的性能.
SparseArray<E> sparseArray = new SparseArray<E>();
文章评论